

The Constellation X-ray Mission

The Constellation X-ray Mission

Studying the life cycles of matter in the Universe

Constellation-X

Key scientific goals

- Elemental abundances and enrichment processes throughout the Universe
- Parameters of supermassive black holes
- . Plasma diagnostics from stars to clusters

Mission parameters

- Effective area: 15,000 cm² at 1 keV 100 times AXAF and XMM for high resolution spectroscopy
- Spectral resolving power: 3,000 at 6.4 keV
 5 times Astro-E calorimeter
- Band pass: 0.25 to 40 keV
 100 times increased sensitivity at 40 keV

X-ray Equivalent of the Keck Telescope

Imaging

0.1 arc sec 40,000 cm²

Spectroscopy

1 arc sec 780,000 cm²

0.6 arc sec 1,000 cm² (100 cm²)*

15 arc sec 30,000 cm² (15,000 cm²)*

* effective area at the spectrometer

Constellation-X

Studying the Life Cycles of Matter with the Constellation X-ray Mission

Obtain high quality X-ray spectra for all classes of X-ray sources over a wide range of luminosity and distance to determine:

- the abundance of elements with atomic number between Carbon and Zinc (Z=6 to 30) using line to continuum ratios
- the ionization state, temperature, and density of the emission region using plasma diagnostics
- the underlying continuum process with a broad bandpass
- dynamics from line shifts and line broadening

Constellation-X Requirements Flow Down

Science Goals

Elemental Abundances and Enrichment throughout the Universe

> Parameters of Supermassive Black Holes

Plasma Diagnostics from Stars to Clusters

Measurement Capabilities

Minimum effective area: 15,000 cm² at 1 keV

6,000 cm² at 6.4 keV 1,500 cm² at 40 keV

Telescope angular

resolution: 15" HPD from 0.25 to 10 keV

1' HPD above 10 keV

Minimum Diameter

Field of View: 2.5 arcmin < 10 keV

8 arcmin > 10 keV

Minimum spectral

resolving power ($E/\Delta E$): 300 from 0.25 to 6.0 keV

3000 at 6 keV 10 at 40 keV

Band Pass: 0.25 to 40 keV

Key Technologies

High Throughput Optics

• Lightweight \acute{o} 250 kg

Replicated shells and segments

High Spectral Resolution

 2 eV microcalorimeter arrays

- Coolers
- Lightweight gratings
- CCD arrays extending to 0.25 keV

Broad Bandpass

- Multilayer optics
- CdZnTe detectors

Top Level Mission Performance Requirements

- The effective area specified assumes a high (> 95%) viewing efficiency per orbit during the life of the mission.
- For orbits with lower viewing efficiencies, the total mission effective area *or* the duration of mission must increase proportionately to the loss in viewing efficiency.
- During on-orbit operations, the total mission effective area must be pointed toward the same target at the same time (\pm 5 minutes).
- Redundancy/reliability such that no one failure can result in loss of more than 30% of the mission science
- Mission life
 - three years minimum at full performance
 - five years goal

Constellation-X Science Payload

Two coaligned telescope systems cover the 0.25-40 keV band.

A spectroscopy X-ray telescope (SXT) from 0.25 to 10.0 keV

- an array of microcalorimeters with 2 eV resolution.
- a reflection grating/CCD to maintain resolution > 300 below 1 keV

A hard X-ray telescope (HXT) from 10 to 40 keV

- grazing incidence optics
- an energy resolution ~1 keV, sufficient to measure the continuum

Constellation-X Instrumentation

Spectroscopy X-ray Telescope

Hard X-ray Telescope

The Constellation-X Multi-satellite Approach to Large Collecting Area

To achieve 15,000 cm² effective area on a single satellite requires a Titan-class launch.

An alternative low-risk approach to achieve large X-ray collecting area is to utilize a constellation of six identical low-cost Deltaclass satellites.

Launch intervals of three months.

Facilitate simultaneous viewing and high efficiency by using libration point orbit.

 Low-Earth orbit mission requires increased collecting area or mission life.

Spacecraft design lifetime is three years

consumables targeted for a five-year mission

Constellation-X Reference Design

Comparison of X-ray Observatories Raw Collecting Power

	AXAF	XMM	Constellation-X	XEUS
Focal Length (m):	10	7.5	8.5	25
Diameter (m)	1.2	0.7	1.3	10
Number of Telescopes:	1	3	6	1
Angular Resolution (HEW) (arc sec):	0.5	15	15	5
Collection Area (cm²): 1 keV 6.4 keV 40 keV	800 300 -	5,000 2,500 -	30,000 6,000 1,500	100,000 8,000 -
Spectrometer 1keV area	100	300	15,000	50,000
Observing Efficiency:	95%	95%	95%	60%
Effective 1 keV area	95	285	14,250	30,000

X-ray Observatories Raw Aperture Comparison

Constellation-X Advanced Capabilities I. High Throughput

A 20-100 fold gain in effective area for high resolution X-ray spectroscopy

High throughput optics plus high quantum efficiency calorimeters

Lightweight reflection gratings maintain resolution and coverage at low energies (< 1 keV)

Constellation-X Advanced Capabilities II. High Spectral Resolution

The Next Generation Microcalorimeter Array

High quantum efficiency with the capability to map extended sources

- A factor of 5 improvement (to 2 eV) in spectral resolution
- Successor to the calorimeter to be flown on Astro-E (2000-2002)
- At Iron K, 2 eV resolution gives a velocity diagnostic of 10 km/s

Constellation-X Advanced Capability III. Hard X-ray

The hard X-ray band is crucial to determine the underlying continuum

Planned missions (AXAF, AMM, Spectrum XG, and Astro-E) have limited or no sensitivity above 10 keV

AGN viewed edge-on through the molecular torus

AGN viewed face-on

- No previous instrument has employed focusing in the Hard X-ray band
- Multilayer coatings and hard X-ray pixelated detectors to increase high energy response
- Dramatic sensitivity improvements will be achieved

Abundance Determinations with the Constellation X-ray Mission

The Constellation-X energy band contains the K-line transitions of 25 elements allowing simultaneous direct abundance determinations using line-to-continuum ratios

The sensitivity of Constellation-X will allow abundance measurements in:

- the intracluster medium in distant clusters,
- the halos of elliptical galaxies,
- starburst galaxies,
- o stellar coronae,
- young and pre-main sequence stars,
- X-ray irradiated accretion flows, and
- supernova remnants and the interstellar medium.

Temperature, Density, and Velocity Diagnostics

The spectral resolution of the Constellation X-ray Mission is tuned to study the He-like density sensitive transitions of Carbon through Zinc

Direct determination of

- $_{\circ}$ densities from 10 8 to 10 14 cm $^{-3}$
- o temperature from 1-100 million degrees.

Velocity diagnostics at Fe K line:

- line width gives a bulk velocity of 100 km/s
- line energy gives an absolute velocity determination to 10 km/s

Simultaneous determination of the continuum parameters

Observations of Clusters of Galaxies

Baryon content of Universe is dominated by hot X-ray emitting plasma

Clusters of galaxies are the largest and most massive objects known

Constellation-X observations of clusters essential for understanding structure, evolution, and mass content of the Universe

- Observe epoch of cluster formation and determine changes in luminosity, shape, and size vs redshift
- Measure abundances of elements from carbon to zinc, globally mapping generation and dissemination of seeds for earth-like planets and life itself
- Map velocity profiles, probing dynamics and measuring distributions of luminous and dark matter

Observations of Supermassive Black Holes with the Constellation X-ray Mission

- Obtain the first detailed X-ray spectra of AGN out to redshift 5
- Study the faint AGN populations
- Resolve narrow X-ray emission line components in the spectra of AGN
- Test general relativity in the strong gravity limit.
- Determine the rotation rate and mass of black holes
- Determine the geometry of the accretion flow

Constellation-X Will Determine the Nature of Supermassive Black Holes

- Active galactic nuclei and quasars powered by accretion of matter onto supermassive black holes
- X-rays produced near event horizon and probe 100,000 times closer to black hole than HST
- Relativistically broadened iron lines probe inner sanctum near black holes, testing GR in strong gravity limit
- o Constellation-X will determine black hole mass and spin using iron K line
 - . Spin from line profiles
 - Mass from time-linked intensity changes for line and continuum

Constellation-X Technology Requirements

Microcalorimeters

Lightweight X-ray Optics

Multilayer Coatings

CdZnTe Arrays

Deployable Structures

CCD/Grating

Coolers page 21

X-ray Observatories Timeline

Constellation-X

Upcoming Missions:

AXAF Spectrum XG XMM Astro-E

Current Missions:

ROSAT ASCA RXTE BeppoSAX

1996 1998 2000 2002 2004 2006 2008 2010

- Constellation-X

Constellation-X Key Events Over Past Year

Feb 1997 - Issued *The High Throughput X-ray Spectroscopy (HTXS) Mission The Technology Roadmap*

Mar 1997 - Independent Review and SEUS endorsement for HTXS Mission

May 1997 - Breckenridge SScAC meeting approves HTXS as candidate FY04 new start

- Jean Grady appointed Study/Program Manager

Jun 1997 - Second presentation to NASA Administrator Dan Goldin

Jul 1997 - State of the Universe report to Wes Huntress

Aug 1997 - Presentation at IAU Meeting in Kyoto

Sep 1997 - Letter to HT and NW from Alan Bunner requesting formation of Facility

Science Team

- Visit Europe to discuss with ESA cooperation in technology development

Oct 1997 - Name changed to Constellation-X

Constellation-X Key Events Over Past Year

- Nov 1997 **HEAD** Meeting exhibit
- Dec 1997 Letter from Alan Bunner inviting scientists to join C-X FST
 - ESA declines to cooperate (for time being)
 - Wes Huntress approves release of FY98 funding (~\$3.2M) for C-X technology program
- Jan 1998 AAS Meeting exhibit
- Feb 1998 President's FY99 budget request includes funding for C-X technology for FY99-03 (but less than required)
 - Release of NRA for funding instrument technology development
 - Initial meeting of C-X FST
- Mar 1998 Release of CAN for funding industry participation in mission architecture studies

Constellation-X Technology Roadmap Hard X-ray Telescope: Optics

Primary Approach - Segmented shells

- o Approach drawn from ASCA, ASTRO-E, SODART
- Epoxy replicated foils or thermally-formed glass substrates:
 - Mass ~ 100 kg achievable
 - Measured surface quality 3.7 Å glass, 5.5 Å foils meets requirements

Required technical development

Demonstrate coating without distortion

Pt/C Foil Optic and CdZnTe Strip Detector Mosaic (20-40 keV)

Effective Area

- Image at 30 keV achieved in August 1997 using Pt/C multilayer on an epoxy replicated foil mirror shell at GSFC/Nagoya -- 30 layer pairs, 0.13 micron thick with no distortion of foil due to stress
- W/Si multilayer on curved glass at Caltech/Columbia -- 200 layer pairs, 0.66 micron thick with acceptable stress
- Balloon flights planned in 1999

Constellation-X Calorimeter Advances

First flight test of Microcalorimeter

- Wisconsin/GSFC rocket flight 06/96
- 36 pixel array operating at 60 mK
- Observation of diffuse X-ray background
- Resolution of 14 eV at 277 eV achieved
- Detection of Sulfur IX and Oxygen VII
- Next flight 8/97 with improved array

First demonstration of TES Calorimeter at NIST

- Transition Edge Superconduction thermometer
- First result of 7.1 eV in Summer 1996 matches best to date
 - Capable of higher energy resolution Higher counting rates Lower cryogenic heat loads
- Not yet optimized!
 - expect significant improvement

Constellation-X Organization

Project Formulation Manager

Jean Grady

Constellation-X

Constellation-X Goals for the Coming Year

- Make significant progress in technology
 - initiate technology development programs
 - incorporate results of industry and GSFC/SAO mission study activities
- Target the upcoming decadal committee report
 - make a concise science case (for multiple audiences)
 - highlight the public appeal of C-X science
 - public brochures, posters, and other PR handout materials
- Address funding issues
 - technology development budget (FY98-01) currently ~1/2 requested/required per Technology Roadmap (FY98-00)
 - funding for Phase A and B not covered in current budget request
 - identify savings in end-to-end costs (1997-2012)
- Support upcoming events
 - 1998 State of the Universe report to Wes Huntress (or replacement) in May
 - SEU special session at San Diego AAS Meeting
 - C-X display at January AAS Meeting

